Wpływ dobowych przyrostów masy ciała loszek rasy wielkiej białej polskiej i polskiej białej zwisłouchej na ich umięśnienie i otłuszczenie

Wanda Milewska

Uniwersytet Warmińsko-Mazurski w Olsztynie, Katedra Hodowli Trzody Chlewnej, ul. Oczapowskiego 5, 10-718 Olsztyn


SŁOWA KLUCZOWE: loszki / wbp / pbz / przyrosty dobowe / grubość słoniny / mięśniość

Przyrosty dobowe masy ciała są uwzględniane jako jedna z głównych cech w ocenie przyżywki, stanowiącej podstawę selekcji loszek i knurków hodowlanych. Zwierzęta podyktowane tej ocenie muszą się odznaczać przyrostami życiowymi nie mniejszymi niż 400 g/dobę. Jest to cecha o średniej odwzorowalności (h²=0,3), a zatem jej wartość determinowana jest warunkami środowiska, w tym głównie żywienia i utrzymania. Znaczenie odgrywają także inne czynniki, m.in. masa ciała ocenianych zwierząt, pleć, miot, z którego zwierzę pochodzi, a u loszek także występowanie rui [3, 9, 11, 12]. Gajewczyk [7] i Blicharski [1] sugerują, że ze względu na zbliżanie się do bardzo wysokiego poziomu mięśniności świń rasy wbp i pbz, celowe jest zwiększenie intensywności selekcji w kierunku przyrostów dobowych masy ciała. Do niedawna wysokie
przyrosty masy ciała świń łączyły się ze zwiększeniem ich otulshczenia, co utrudniało pracę selekcyjną w kierunku zwiększenia umięśnienia.

Celem pracy było określenie, czy i w jakim stopniu przyrosty dobowe masy ciała osiągane przez loszki rasy wbp i pbz w latach 2000-2004 wpłynęły na ich mięśnięność i otulshczenie.

**Materiał i metody**


**Wyniki i dyskusja**

Jak wynika z danych zamieszczonych w tabeli 1, badane cechy były uzależnione od rasy i roku urodzenia. Loszki rasy pbz charakteryzowały się większymi przyrostami dobowymi (średnio o około 22 g), cieńszą słońioną grzbietową (o około 0,3 mm) i wyższą mięśnięnością (o około 0,5%) niż loszki wbp (P≤0,01). Badane cechy podlegały korzystnym zmiianom w kolejnych latach. Średnie przyrosty dobowe standaryzowane na 180. dzień życia wzrosły z 582 g w 2000 roku do 632 g w roku 2004 (P≤0,01). Mięśnięność loszek wzrosła z 56,5% w 2000 roku do 57,2% w roku 2004, przy niewielkim wzroście grubości słońiny, odpowiednio z 10,68 mm do 10,87 mm, czyli o 0,19 mm. Odnotowane różnice między latami były wysoko istotne (P≤0,01) bądź istotne (P≤0,05).

Z uwagi na istotne interakcje występujące między rasą a rokiem urodzenia (tab. 1), w tabeli 2 przedstawiono badane cechy loszek w kolejnych latach, oddzielnie dla każdej rasy. Przyrosty dobowe i mięśnięność loszek obu ras systematycznie wzrastały, natomiast średnia grubość słońiny u loszek obu ras w analizowanych latach zmieniała się w różny sposób. U loszek wbp po roku 2002 zauważyć można spadek wartości tej cechy, natomiast u loszek pbz we wszystkich latach odnotowano stopniowy wzrost grubości słońiny. W 2004 roku średnia grubość słońiny była podobna i wynosiła u loszek wbp 10,91, a u pbz – 10,86 mm. Różnice między średnią grubością słońiny dla każdej z ras w kolejnych latach były statystycznie wysoko istotne (P≤0,01) lub istotne (P≤0,05).

Przyrosty masy ciała loszek wbp w 2000 roku wynosiły średnio 574 g, a loszek pbz 587 g. Do 2004 wzrosły u loszek wbp średnio o 51 g, a u pbz o 47 g. Różnice między
Tabela 1 – Table 1
Cechy oceny przyżywiciowej loszek w zależności od rasy i roku urodzenia
Results of judging live gilts in depending on the breed and the year of birth

<table>
<thead>
<tr>
<th>Cechy – Traits</th>
<th>Rasa – Breed</th>
<th>Rok – Year</th>
<th>Istotność interakcji</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wbp</td>
<td>pbz</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>PLW</td>
<td>PL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>7719</td>
<td>17 752</td>
</tr>
<tr>
<td>Przyrosty dobowe masy ciała (g)</td>
<td>$\overline{x}$</td>
<td>599$^b$</td>
<td>621$^A$</td>
</tr>
<tr>
<td>Daily gains (g)</td>
<td>$\overline{x}$</td>
<td>37</td>
<td>56</td>
</tr>
<tr>
<td>Grubość słoniny (mm)</td>
<td>$\overline{x}$</td>
<td>11.0$^b$</td>
<td>10.7$^A$</td>
</tr>
<tr>
<td>Backfat thickness (mm)</td>
<td>$\overline{x}$</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Mięsność (%)</td>
<td>$\overline{x}$</td>
<td>56.6$^b$</td>
<td>57.1$^A$</td>
</tr>
<tr>
<td>Meatness (%)</td>
<td>$\overline{x}$</td>
<td>1.6</td>
<td>1.8</td>
</tr>
</tbody>
</table>

A, B – P≤0,01; a, b – P≤0,05; **P≤0,01

Tabela 2 – Table 2
Przyrosty dobowe masy ciała, grubość słoniny i mięsność loszek rasy wbp i pbz w latach 2000-2004
Daily gains, backfat thickness and meatness of PLW and PL gilts in the years 2000-2004

<table>
<thead>
<tr>
<th>Rasa</th>
<th>Rok</th>
<th>n</th>
<th>Przyrosty dobowe masy ciała (g)</th>
<th>Grubość słoniny</th>
<th>Meatness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Daily gains (g)</td>
<td>(mm)</td>
<td>(%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\overline{x}$</td>
<td>$\overline{x}$</td>
<td>$\overline{x}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wbp</td>
<td>2000</td>
<td>1353</td>
<td>574$^b$</td>
<td>39</td>
<td>11.02$^b$</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>1159</td>
<td>586$^B$</td>
<td>34</td>
<td>11.13$^B$</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>1833</td>
<td>596$^a$</td>
<td>30</td>
<td>11.13$^B$</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>1974</td>
<td>608$^b$</td>
<td>31</td>
<td>10.95$^{Aa}$</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>1400</td>
<td>625$^A$</td>
<td>34</td>
<td>10.91$^{Aa}$</td>
</tr>
<tr>
<td>pbz</td>
<td>2000</td>
<td>2306</td>
<td>587$^{Ab}$</td>
<td>45</td>
<td>10.47$^B$</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>2465</td>
<td>618$^{Ba}$</td>
<td>61</td>
<td>10.65$^{Ab}$</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>4605</td>
<td>621$^{Ba}$</td>
<td>55</td>
<td>10.75$^A$</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>4849</td>
<td>629$^A$</td>
<td>56</td>
<td>10.76$^{Aa}$</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>3527</td>
<td>634$^A$</td>
<td>53</td>
<td>10.86$^{AC}$</td>
</tr>
</tbody>
</table>

A, B, C, D – P≤0,01; a, b – P≤0,05

wartością tej cechy dla każdej z ras w kolejnych latach okazały się statystycznie wysoko istotne (P≤0,01) bądź istotne (P≤0,05).

Analizując procentową zawartość mięsa w ciele loszek stwierdzono wzrost wartości tej cechy w kolejnych latach u obu ras: z 56,27% do 57,10% u wbp i z 56,78% do 57,36% u pbz. Odnotowane różnice pomiędzy latami dla każdej z ras były statystycznie wysoko istotne (P≤0,01) bądź istotne (P≤0,05).
Według danych Instytutu Zootechniki [5], w Polsce w 2004 roku loszki rasy wbp charakteryzowały się średnimi przyrostami dobowymi na poziomie 605 g, grubośćą słoniny 10,4 mm i mięśnią 58,1%, natomiast loszki rasy pbz odpowiednio: 611 g, 10,8 mm i 57,8%. Uzyskane wyniki badań własnych wskazują, że loszki obu ras wyhodowane w woj. warmińsko-mazurskim charakteryzowały się wyższymi przyrostami dobowymi i nieco grubszą słoniną grzbietową niż loszki z hodowli krajowej, natomiast ich mięśnią była podobna. Uzyskane wyniki, jak też rezultaty innych badań krajowych i zagranicznych [2, 4, 13], potwierdzają skuteczność prowadzonej oceny przyżywialnej i stosowania wyników tej oceny w selekcji na poprawę tempa wzrostu i umiśnienia zwierząt. Jarczyk i Kowalewski [8], analizując możliwości poprawy cech oceny przyżywialnej loszek i krówkow poprzez użycie knurów ras importowanych, stwierdzili, że właściwa praca selekcyjna może dać nawet lepsze rezultaty niż wykorzystanie ras importowanych.

Tabela 3 — Table 3
Mięśniość i otulanie loszak rasy wbp i pbz w zależności od przyrostów dobowych masy ciała
Meatness and fatness of PLW and PL. galls in dependence on the daily weight gains

<table>
<thead>
<tr>
<th>Rasa</th>
<th>Grupa</th>
<th>n</th>
<th>Mięśniość (%)</th>
<th>Grubość słoniny (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Meatness (%)</td>
<td>Backfat thickness (mm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>μ</td>
<td>Sd</td>
</tr>
<tr>
<td>wbp</td>
<td>I</td>
<td>709</td>
<td>56,66&lt;sup&gt;b&lt;/sup&gt;</td>
<td>1,19</td>
</tr>
<tr>
<td>PLW</td>
<td>II</td>
<td>3217</td>
<td>56,76&lt;sup&gt;b&lt;/sup&gt;</td>
<td>1,47</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>3216</td>
<td>56,78&lt;sup&gt;a&lt;/sup&gt;</td>
<td>1,69</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>577</td>
<td>57,70&lt;sup&gt;a&lt;/sup&gt;</td>
<td>1,63</td>
</tr>
<tr>
<td>pbz</td>
<td>I</td>
<td>1171</td>
<td>56,66&lt;sup&gt;b&lt;/sup&gt;</td>
<td>1,32</td>
</tr>
<tr>
<td>PL</td>
<td>II</td>
<td>5875</td>
<td>56,27&lt;sup&gt;bc&lt;/sup&gt;</td>
<td>1,63</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>6427</td>
<td>57,09&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>1,81</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>4279</td>
<td>58,37&lt;sup&gt;a&lt;/sup&gt;</td>
<td>1,54</td>
</tr>
</tbody>
</table>

A, B, C, D — P≤0,01; a, b — P≤0,05

Z danych zamieszczonych w tabeli 3 oraz na wykresach 1 i 2 wynika, że niezależnie od rasy, loszki o wysokich przyrostach dobowych (grupa IV) cechowały się wyższą mięśnią, a średnia grubość słoniny była podobna, jak u loszek o najmniejszych przyrostach (grupa I). Sugeruje to, że selekcja na zwiększenie przyrostów dobowych masy ciała u tych ras prowadzi do wzrostu mięśni bez zwiększenia otulzenia, przy czym loszki rasy pbz uzyskały lepsze wyniki niż wbp. Również w badaniach Nowachowiecza i wsp. [10] loszki pbz, produkowane w bydgoskim okręgu hodowlanym, uzyskiwały wyższe przyrosty niż loszki wbp, miały jednak grubszą słoninę grzbietową i nieznacznie niższą mięśnię. Bobćek i wsp. [2], porównując cechy produkcyjne u świń Large White i White Meaty na Słowacji, uzyskali gorsze wyniki: w 2001 roku grubość słoniny grzbietowej kształtowała się średnio na poziomie 17,5 mm, a mięśnię – 53,2%. We wcześniejszych badaniach własnych, przeprowadzonych na knurach rasy wbp, pbz, duroc i pietrain, obserwowano stopniowe obniżanie się zawartości mięsa wraz ze
Rys. 1. Średnia grubość słoniny loszek w zależności od przyrostów dobowych masy ciała standaryzowanych na 180. dzień życia
Fig. 1. Average backfat thickness of gilts in dependence on the daily gains adjusted to the 180th day of life

Rys. 2. Mięsność loszek w zależności od przyrostów dobowych masy ciała standaryzowanych na 180. dzień życia
Fig. 2. Meatness of gilts in dependence on the daily gains adjusted to the 180th day of life
wzrostem przyrostów dobowych powyżej 650 g [9]. Prawdopodobnie współczesne
świecie typu mięsnego, a do takich zaliczamy rasy wbp i pbz, mają dziedziczną skłono-
ność do osadzania znacznych ilości mięsa w ciele, przy jednocześnie wyższych wymaga-
ganiach odnośnie ilości i jakości paszy, w tym pełnowartościowego białka [6]. Należy
zaznaczyć, że obecnie w chlewniach hodowlanych panują dobre warunki środowisko-
we, a zwierzęta są prawdowo żywione odpowiedniej jakości paszami pełnoporcjowy-
mi. Stąd też zwiększenie przyrostów masy ciała loszek prowadzi do poprawy umieję-
ności, bez wzrostu otyłościenia.

Na podstawie uzyskanych wyników można sformułować następujące wnioski:
– poziom cech oceny przyżywialnej loszek wyprodukowanych w chlewniach woj.
warmińsko-mazurskiego wskazuje, że zarówno rasa pbz, jak i wbp stanowiły materiał
o wysokiej wartości hodowlanej choć zaznacza się przewaga rasy pbz;
– selekcja na zwiększanie przyrostów dobowych masy ciała loszek rasy wbp i pbz
prowadzi do poprawy ich mięśniowości, bez wzrostu otyłościenia.

PIŚMIENNICTWO
1. BLICHARSKI T., 2003 – Organizacja i strategia hodowli trzody chlewnej. Trzoda Chlewna
   11 (41), 24-30.
2. BOBČEK B., ŘEHÁČEK P., FLAK P., KOVÁČ L., MLYNEK J., 2002 – Comparison of
   production traits of Large White and White Meaty pig breeds for 1996 to 2001 in Slovakia.
   trzody chlewnej”, 6.05.1999 Olsztyn, 79.
4. CAMERON N.D., CURRAN M.K., 1995 – Responses in carcass composition to divergent
   świń w 2004 roku. Wyd. IZ Kraków, 54-70.
   Nauk. „Aktualne problemy w produkci trzody chlewnej”, 6.05.1999 Olsztyn, 20-27.
7. GAJEWCYK P., 2000 – Pełn zmierzający do osiągania wysokiego udziału mięsa w tuszy
   wieprzowej zaczyna powoli wygasać. Trzoda Chlewna 4, 39-42.
8. JARCZYK A., KOWALEWSKI D., 2003 – Możliwość poprawy cech oceny przyżywialnej
   loszek i knurków poprzez użycie knurów ras importowanych w obrębie firmy zarodowej.
   Zeszyty Naukowe Przeglądu Hodowlanego 68(2) 89-94.
9. MILEWSKA W., GRUDNIEWSKA B., 1999 – Zależność między przyrostami dziennymi
   a zawartością mięsa u knurów ocenianych metodą przyżywialną. Międzyn. Konf. Nauk. „Aktu-
   alne problemy w produkci trzody chlewnej”, 6.05.1999 Olsztyn, 97.
10. NOWACHOWICZ J., MICHALSKA G., CHOJNACKI Z., WAŚLEWSKI P.D., BUCEF T.,
    2003 – Analiza wyników oceny przyżywialnej loszek produkowanych w bydgoskim okręgu
    Przeglądu Hodowlanego 68(2), 33-40.
12. ORZECHOWSKA B., MUCHA A., 1999 – Wpływ wystąpienia rui u loszek testowanych w
    w produkci trzody chlewnej”, 6.05.1999 Olsztyn, 100.
The influence of daily gains of Polish Large White and Polish Landrace gilts on their meatness and fatness

Summary
Investigations included 7719 Polish Large White (PLW) and 17 752 Polish Landrace (PL) gilts. Together 25 471 pigs produced between 2000-2004 in Warmińsko-Mazurski province were used. The aim of the study was to examine relationship between meatness and fatness of gilts and their daily weight gains. The following traits were estimated: body weight daily gains adjusted to the age of 180 days, backfat thickness and carcass meat content. The results of judging live animals produced in breeding stocks of Warmińsko-Mazurski province indicated that gilts of both breeds made up valuable breeding material. Gilts were divided into 4 groups depending on their daily weight gains: I – to 550, II – 551-600, III – 601-650 and IV – over 650 g. It was found, that PL gilts indicated significantly (P≤0.01) higher daily weight gains (adjusted to 180 days of age), lower fatness and greater meatness than PLW gilts. The highest meatness was found in gilts of both breeds with daily gains exceeding 650 g. The lowest backfat thickness was observed in gilts with the highest as well as with the lowest daily weight gains. The results suggest that irrespective of breed, selection of gilts for the high daily weight gains leads to the increase of their meatness without increasing their fatness.