Opasanie buhajków rasy polskiej holsztyńsko-fryzyjskiej systemem tradycyjnym lub mieszaną pełnodawkową (TMR)

Karol Węglarzy¹,², Małgorzata Bereza², Jan Szarek³

¹Instytut Zootechniki – PIB w Krakowie, Dział Technologii, Ekologii i Ekonomiki Produkcji Zwierzęcej, ul. Krakowska 1, 32-082 Balice k. Krakowa
² Instytut Zootechniki – PIB w Krakowie, Zakład Doświadczalny Grodzic Śląski Sp. z o.o. Grodzic 3, 43-386 Świętoszówka
³Uniwersytet Rolniczy w Krakowie, Katedra Hodowli Bydła, al. Mickiewicza 24/28, 30-059 Kraków

Mięso wołowe jest jednym z najbardziej wartościowych produktów żywnościowych pochodzenia zwierzęcego dzięki wysokiej zawartości białka, witamin i substancji mineralnych. Badania przeprowadzono na 28 młodych buhajkach rasy polskiej holsztyńsko-fryzyjskiej odmiany czarno-białej, przydzieleny do dwóch grup. Grupa kontrolna (I) była żywiona tradycyjnie, natomiast doświadczalna (II) otrzymywała mieszankę pełnodawkową (TMR). Buhajki opasano do masy 450 kg. Dzienne przyrosty masy ciała podczas opasania wynosiły - 840 g (grupa I) i 900 g (grupa II). W obu grupach buhajków - kontrolnej (żywionej tradycyjnie) i doświadczalnej (opasanej mieszanką pełnodawkową - TMR), nie stwierdzono zasadniczych różnic w wartości rzeźnej i cechach jakościowych mięsa.

SŁOWA KLUCZOWE: buhajki / opasanie / mieszanka pełnodawkowa (TMR) / cechy jakościowe mięsnia najdłuższego grzbietu

Mięso wołowe należy do najbardziej wartościowych produktów pochodzenia zwierzęcego, charakteryzuje się wysokimi walorami odżywczymi, zdrowotnymi i kulinarnymi, dzięki znacznej zawartości dobrze przysiwalnego białka, witamin oraz substancji mineralnych, zwłaszcza dobrze przysiwalnego żelaza. Mięso wołowe pozyskiwane od młodych zwierząt cechuje pożądana kruchość, soczystość oraz dobra strawność. Na efektywność opasania oraz na cechy jakościowe mięsa wpływają czynniki genetyczne oraz pozagenetyczne, głównie żywienie.
Ważnym elementem produkcji wołowiny jest jej opłacalność, która w największym stopniu zależy od rodzaju pasz skarminych w okresie opasanja [7], warunków klimatycznych i utrzymania.

Żywienie krów mieszanką pełnodawkową – TMR (Total Mixed Ration) zyskało w ostatnim okresie dużą popularność [5, 14]. Krowy żywione w tym systemie otrzymują pełnodawkową zmiksowaną paszę, zawierającą zarówno pasze objętościowe, jak i treściwe. Przeprowadzone dotychczas badania wskazują, że zastosowanie TMR w żywieniu krów przynosi wymiernie korzyści [9, 10], powodując wzrost ich wydajności mlecznej [3, 13]. Brak jest jednak szerszych badań nad określeniem przydatności stosowania mieszanek pełnodawkowych (TMR) w opasaniu młodego bydła rzeźnego.

Celem badań było porównanie wpływu żywienia buhajków rasy polskiej holsztyńsko-fryzyjskiej odmiany czarno-białej mieszanką pełnodawkową i tradycyjną na przebieg ich opasanina i wartość rzeźną.

Materiał i metody

Badania przeprowadzono na 28 buhajkach rasy polskiej holsztyńsko-fryzyjskiej odmiany czarno-białej, które podzielono metodą analogów na dwie grupy po 14 sztuk. Buhajki z grupy kontrolnej (I) były żywione tradycyjnie, dawką składającą się z kiszonki z kukurydzy, kiszona z traw podwieniętych i siana oraz paszy treściwej, o składzie podanym w tabeli 1. Kiszony i paszę treściwą zadowano buhajkom dwa razy dziennie do woli, natomiast siano (w ilości 1 kg) na zakładkę po odpasie wieczornym. Paszę

Tabela 1 – Table 1

<table>
<thead>
<tr>
<th>Wyszczególnienie</th>
<th>Specification</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pszenica</td>
<td>Wheat</td>
<td>47,0</td>
</tr>
<tr>
<td>Zecznica</td>
<td>Barley</td>
<td>20,0</td>
</tr>
<tr>
<td>Sługa sojowa</td>
<td>Soybean meal</td>
<td>5,0</td>
</tr>
<tr>
<td>Sługa rzepakowa</td>
<td>Rapeseed meal</td>
<td>17,5</td>
</tr>
<tr>
<td>Drożdże pastewne</td>
<td></td>
<td>2,5</td>
</tr>
<tr>
<td>Fodder yeast</td>
<td></td>
<td>2,5</td>
</tr>
<tr>
<td>Kwasny węglan sodu</td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>Acid monosodium carbonate</td>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>Kreda pastewna</td>
<td></td>
<td>4,0</td>
</tr>
<tr>
<td>Fodder chalk</td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>Sól pastewna</td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>Fodder salt</td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>Premiks Superpremium</td>
<td></td>
<td>202</td>
</tr>
<tr>
<td>Premix Superpremium</td>
<td></td>
<td>12,7</td>
</tr>
<tr>
<td>Zawartość w 1 kg suchej masy mieszanki:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>energia metaboliczna, MJ/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metabolizable energy, MJ/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>białko ogólne, g/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>crude protein, g/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wyszczególnienie</td>
<td>TMR</td>
<td>Dawka tradycyjna</td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>------------------</td>
</tr>
<tr>
<td>Kiszona z kukurydzy, %</td>
<td>47,0</td>
<td>50,0</td>
</tr>
<tr>
<td>Maize silage, %</td>
<td>12,0</td>
<td>-</td>
</tr>
<tr>
<td>Kiszona z lucerny, %</td>
<td>12,0</td>
<td>33,5</td>
</tr>
<tr>
<td>Lucerne silage, %</td>
<td>17,0</td>
<td>-</td>
</tr>
<tr>
<td>Kiszona z trawy, %</td>
<td>2,0</td>
<td>-</td>
</tr>
<tr>
<td>Grass silage</td>
<td>10,0</td>
<td>13,5</td>
</tr>
<tr>
<td>Młotó</td>
<td>174</td>
<td>143</td>
</tr>
<tr>
<td>Grain, %</td>
<td>10,5</td>
<td>7,04</td>
</tr>
<tr>
<td>Makuch rzepakowy, %</td>
<td>-</td>
<td>3,0</td>
</tr>
<tr>
<td>Rape cake, %</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mieszanka treściw, %</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Concentrate, %</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siano, %</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hay, %</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>zawartość w 1 kg:</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Content in 1 kg:</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>energia metaboliczna, MJ</td>
<td>10,5</td>
<td>7,04</td>
</tr>
<tr>
<td>metabolizable energy, MJ</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>białko ogólne, g</td>
<td>174</td>
<td>143</td>
</tr>
<tr>
<td>crude protein, g</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wyszczególnienie</th>
<th>Sucha masa Dry matter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg</td>
</tr>
<tr>
<td>Kiszona z kukurydzy</td>
<td>5,57</td>
</tr>
<tr>
<td>Maize silage</td>
<td>1,98</td>
</tr>
<tr>
<td>Kiszona z lucerny</td>
<td>2,19</td>
</tr>
<tr>
<td>Lucerne silage</td>
<td>2,06</td>
</tr>
<tr>
<td>Kiszona z trawy</td>
<td>0,89</td>
</tr>
<tr>
<td>Grass silage</td>
<td>4,31</td>
</tr>
<tr>
<td>Młotó</td>
<td>-</td>
</tr>
<tr>
<td>Grain</td>
<td>-</td>
</tr>
<tr>
<td>Makuch rzepakowy</td>
<td>-</td>
</tr>
<tr>
<td>Rape's cake</td>
<td>-</td>
</tr>
<tr>
<td>Mieszanka treściw</td>
<td>-</td>
</tr>
<tr>
<td>Concentrate</td>
<td>-</td>
</tr>
<tr>
<td>Razem – Total</td>
<td>17,60</td>
</tr>
</tbody>
</table>

Treścią otrzymywaliśmy w ilości 0,8% masy ciała. Bułajki z grupy doświadczalnej (II) otrzymywali do woli pasze w postaci mieszanki pełnodawkowej, o składzie podanym w tabeli 2, i udziale poszczególnych składników, przedstawionym w tabeli 3. Skład chemiczny poszczególnych pasz i TMR podano w tabeli 4. Dawki pasz zbilansowano wg norm żywienia DLG [11, 12, 20].
Tabela 4 - Table 4
Skład chemiczny TMR i poszczególnych pasz
Chemical composition of TMR and other feeds

<table>
<thead>
<tr>
<th>Wyszczególnienie Specification</th>
<th>Sucha masa Dry matter (%)</th>
<th>Białko surowe Crude protein (%)</th>
<th>Tuścz surowy Crude fat (%)</th>
<th>Włókno surowe Crude fibre (%)</th>
<th>Popiół Ash (%)</th>
<th>Związki bezazotowe wytłagowe N-free extractives (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMR</td>
<td>33,61</td>
<td>6,43</td>
<td>2,52</td>
<td>6,78</td>
<td>3,80</td>
<td>14,08</td>
</tr>
<tr>
<td>Mieszanka treściwa Concentrate</td>
<td>86,23</td>
<td>17,54</td>
<td>3,02</td>
<td>4,92</td>
<td>2,78</td>
<td>57,97</td>
</tr>
<tr>
<td>Kiszonka z kukurydzy Maize silage</td>
<td>24,23</td>
<td>2,45</td>
<td>1,42</td>
<td>6,76</td>
<td>1,45</td>
<td>12,15</td>
</tr>
<tr>
<td>Kiszonka z trawy Grass silage</td>
<td>36,54</td>
<td>3,21</td>
<td>1,33</td>
<td>8,76</td>
<td>3,78</td>
<td>19,46</td>
</tr>
<tr>
<td>Siano Hay</td>
<td>86,20</td>
<td>12,80</td>
<td>2,65</td>
<td>2,89</td>
<td>7,99</td>
<td>59,87</td>
</tr>
</tbody>
</table>

Opasanie obu grup buhajków prowadzono przez 360 dni. Buhajki pięciokrotnie ważono (co 90 dni) i na tej podstawie obliczono średnie dziennie przyrosty masy ciała. Codziennie ważono zadawaną paszę oraz niedojady i na tej podstawie określano pobranie pasz przez zwierzęta. Po osiągnięciu przez buhajki masy ciała około 450 kg, głodzono je przez 24 godziny (zapewniając dostęp do wody), a następnie ubito. Najpierw określono masę półtuszu ciepłych, a następnie półtusz zimnych oraz wydajność rzeźną. Po 48-godzinnym chłodzeniu pobrano próbki z mięśnia najdłuższego grzbietu do analiz fizykochemicznych i organoleptycznych.

Uzyskane wyniki analizowano statystycznie stosując analizę wariancji, za pomocą pakietu Statistica 6.0, a istotność różnic weryfikowano testem Duncana.
Wyniki i dyskusja

Na wartość opasową i rzeźną bydła ma wpływ wiele czynników, takich jak: rasa, cechy osobnicze, pleć, wiek, dobrostan, żywienie. Poziom intensywności żywienia zwierząt, który można określić na podstawie oceny tempa wzrostu, czasu uzyskania pożą danej masy ciała i wykorzystania paszy na 1 kg przyrostu masy ciała, ma znaczący wpływ na efektywność opasania oraz na wartość ubojową i rzeżną (wydajność rzeźna, udział poszczególnych wyrębów i skład tkankowy tusz) [2, 17, 18].

Średnie pobranie paszy i ich wartość pokarmową przez buhajki obu grup doświadczalnych przedstawiono w tabeli 5. W grupie I, w przeliczeniu na jednego buhajka, średnie pobranie paszy (objętościowe i treściowe) wynosiło ogółem 4029 kg paszy, a w grupie II – 4608 kg mieszanki pełnodawkowej. Natomiast pobranie energii i białka kształtowało się następująco: grupa I – 14 801 MJ energii metabolicznej i 291,0 kg białka; grupa II – 15 360 MJ energii metabolicznej i 267,3 kg białka.

W tabeli 6 przedstawiono wyniki opasania i wykorzystania paszy w obu grupach doświadczalnych, w przeliczeniu na jednego buhajka. Buhajki grupy II osiągnęły przyrosty masy ciała wynoszące średnio 900 g, a w grupie I – 840 g, różnicę te okazały się statystycznie istotne. W przeliczeniu na 1 kg przyrostu masy ciała buhajki z grupy I zużyły średnio 48,21 MJ energii metabolicznej i 947 g białka, a buhajki z grupy II – 52,18 MJ energii metabolicznej i 826 g białka.

Tabela 5 – Table 5
Srednie pobranie i wartość pokarmowa pasz w okresie doświadczenia, w przeliczeniu na jednego buhajka
Average intake and feeding value of feeds during the experiment period, as calculated into one calf bull

<table>
<thead>
<tr>
<th>Wyszczególnienie</th>
<th>Grupa – Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Kiszona z kukurydzy, kg</td>
<td>1890</td>
</tr>
<tr>
<td>Maize silage, kg</td>
<td>1140</td>
</tr>
<tr>
<td>Kiszona z traw posuszonych, kg</td>
<td>180</td>
</tr>
<tr>
<td>Grass silage, kg</td>
<td>1140</td>
</tr>
<tr>
<td>Siano łąkowe, kg</td>
<td>819</td>
</tr>
<tr>
<td>Meadow hay, kg</td>
<td>180</td>
</tr>
<tr>
<td>Mieszanka treściwa, kg</td>
<td>4029</td>
</tr>
<tr>
<td>Concentrate, kg</td>
<td></td>
</tr>
<tr>
<td>Razern – Total</td>
<td></td>
</tr>
<tr>
<td>Mieszanka pełnodawkowa (TMR), kg</td>
<td>14 801</td>
</tr>
<tr>
<td>Total mixed ration (TMR), kg</td>
<td>291,0</td>
</tr>
</tbody>
</table>

Wartość pokarmowa pobranych pasz:
Feeding value of feed:
energia metaboliczna, MJ
metabolizably energy, MJ
białko ogólne, kg
crude protein, kg

137
Tabela 6 – Table 6
Wyniki opasania i wykorzystania paszy przez jednego buhajkę
Fattening results and feed conversion per one calf bull

<table>
<thead>
<tr>
<th>Wyszczególnienie</th>
<th>Specification</th>
<th>Grupa – Group</th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\bar{x})</td>
<td>SD</td>
<td>(\bar{x})</td>
</tr>
<tr>
<td>Masa ciała na początku opasania, kg</td>
<td>Body weight on start of fattening, kg</td>
<td>140</td>
<td>3.55</td>
<td>132</td>
</tr>
<tr>
<td>Masa ciała końcowa, kg</td>
<td>Final body weight, kg</td>
<td>447.9</td>
<td>6.40</td>
<td>457.7</td>
</tr>
<tr>
<td>Przyrosty masy ciała w okresie opasania, kg</td>
<td>Increases body weight in feeding period, kg</td>
<td>307.3</td>
<td>3.95</td>
<td>325.3</td>
</tr>
<tr>
<td>Dobowy przyrost masy ciała, g</td>
<td>Increases body weight per day, g</td>
<td>840<sup>a</sup></td>
<td>0.02</td>
<td>900<sup>a</sup></td>
</tr>
<tr>
<td>Zużycie na 1 kg masy ciała:</td>
<td>Conversion per 1 kg of body weight gain:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>energii metabolicznej, MJ</td>
<td>metabolizable energy, MJ</td>
<td>48.21</td>
<td></td>
<td>52.18</td>
</tr>
<tr>
<td>białka ogólnego, g</td>
<td>crude protein, g</td>
<td>947</td>
<td></td>
<td>823</td>
</tr>
</tbody>
</table>

Średnie w wierszach oznaczone tymi samymi literami różnią się istotnie przy \(P \leq 0.05 \)
Means in the lines marked with the same letters differ significantly at \(P \leq 0.05 \)

Dane dotyczące wartości rzeźnej buhajków doświadczalnych i cech jakościowych mięśnia najdluższego grzbietu przedstawiono w tabeli 7. Nie odnotowano zasadniczych różnic między buhajkami z obu grup doświadczalnych, z wyjątkiem pH i zawartości białka w mięśniu najdluższym grzbietu. W grupie I stwierdzono statystycznie wyższy poziom pH (5.6) i białka (21.39 g).

Przyrosty dzienne buhajków obu grup mieściły się w zakresie 800-1100 g, co według Jasiołowskiego i wsp. [8] uważane jest za przedział optymalny, pozwalający na uzyskanie odpowiedniej wartości rzeźnej. Uzyskane w doświadczeniu dobowe przyrosty masy ciała buhajków doświadczalnych phf były nieznacznie niższe, niż uzyskane przez Wajdę i wsp. [17] w opasie buhajków mieszańcowych czarno-białej x limousine, które wynosiły 930 g i 910 g, odpowiednio dla grupy kontrolnej i doświadczalnej. Niższe przyrosty masy ciała nie pozwalają na uzyskanie właściwej wartości rzeźnej bydła, natomiast wyższe obniżają opłacalność opasu, poprzez konieczność skarmiania zbyt wysokich ilości paszy treściwej i powodują nadmiernie otłuszczenie tuszy.

Stwierdzono wartości zużycia energii metabolicznej i białka ogólnego na kg przyrostu masy ciała pokrywają się z badaniami Wajdy i wsp. [17]. Niższe zużycie energii metabolicznej w netto na kg przyrostu masy ciała w opasie buhajków phf czb odnotowali w badaniach Wawrzyńczak i wsp. [18], wynosiły one od 46,18 MJ do 50,74 MJ w różnych grupach. Zużycie białka było również wysokie – 1124 g na kg przyrostu masy ciała.
<table>
<thead>
<tr>
<th>Wyszczególnienie</th>
<th>Grupa – Group</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification</td>
<td>I</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\bar{x}</td>
<td>SD</td>
<td>\bar{x}</td>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>Masa tuszy, kg</td>
<td>247,0</td>
<td>2,53</td>
<td>262,0</td>
<td>3,82</td>
<td></td>
</tr>
<tr>
<td>Carcass weight, kg</td>
<td>54,0</td>
<td>0,48</td>
<td>54,6</td>
<td>0,67</td>
<td></td>
</tr>
</tbody>
</table>

Wyniki oceny mięśnia najdłuższego grzbietu: Results evaluation of *longissimus dorsi* muscle:

- pH po 48 godzinach: pH after 48 h
- wodocieńliwość, %: water holding capacity, %
- tęższa masa, %: dry matter, %
- tłuszcz, %: fat, %
- białko, %: protein, %
- marmurkowatość, pkt.: marbling, pts.
- kruchość, pkt.: tenderness, pts.
- soczystość, pkt.: juiciness, pts.
- smakowitość, pkt.: palatability, pts.

	5,6	0,09	5,4	0,06
	49,84	0,66	45,99	0,15
	24,15	1,13	25,46	0,58
	2,58	0,82	2,51	0,30
	21,39	0,41	20,06	0,35

A, A ‑ średnie w wierszach oznaczone tymi samymi literami różnią się wysoko istotnie (P ≤ 0,01) – means in the lines marked with the same letters differ highly significantly (P ≤ 0,01)

a, a ‑ średnie w wierszach oznaczone tymi samymi literami różnią się istotnie (P ≤ 0,05) – means in the lines marked with the same letters differ significantly (P ≤ 0,05)

Poszczególne rasy bydła różnią się od siebie między innymi właściwościami tkanki łącznej, np. w zakresie zawartości i rozpuszczalności kolagenu, poziomem i składem tłuszczu śródmieśniowego oraz proporcjami pomiędzy poszczególnymi włóknami mięśniowymi. Różnice te wpływają na barwę mięsa, straty podczas obróbki termicznej, natomiast w mniejszym stopniu decydują o smaku i kruchości mięsa. Uzyskane średnie wartości pH mięsa buhajków obu grup doświadczalnych wyniosły, odpowiednio 5,60 i 5,39. Wyniki te mieszczą się poniżej wartości pH 5,8 uznawanej za wartość graniczną dla kulinarnego wykorzystania wołowiny [15, 17, 18].

Według Dolatowskiego i wsp. [4] po uboju występują istotne zmiany w strukturze i wartościach technologicznych, mięsa związane z zacieśnieniem struktury białek w tkance.
Wyniki wodochłonności uzyskane dla mięsa obu grup były wyższe niż stwierdzono
w badaniach Wawrzyńczaka i wsp. [18], przeprowadzonych na mięsie opasanych bu-
hajków rasy pHF cbz. Natomiast zawartość białka i tłuszczu w mięsie buhajków była
zoblina do wyników uzyskanych przez innych autorów [17, 18].

Przeprowadzone badania wykazują, że opasanie młodego bydła rzeźnego mieszanką
pełnodawkową (TMR) pozwala na uzyskanie zadowalających dziennych przyrostów
masy ciała, dobrej wydajności i wysokiej jakości mięsa. Uzyskane wyniki dowodzą, że
opasanie młodego bydła rzeźnego mieszanką pełnodawkową może być z dobrym skut-
kiem stosowane w praktyce.

PIŚMIENNICTWO

2. CHOROSZY B., CHOROSZY Z., TOPOLSKI P., 2006 – Wartość rzeźna i jakość mięsa
 buhajków simentalskich pochodzących po buhajach testowych. Roczniki Naukowe Polskiego
 Towarzystwa Zootechnicznego, t. 2, nr 4, 69-75.
 and consumer perception of fluid milk from conventional and pasture – based production
5. GALLARDO M.R., CASTILLO A.R., BARGO F., ABDALA A.A., MACIEL M.G., PEREZ-
 MONTI H., CASTRO H.C., CASTELLI M.E., 2005 – Monesin for lactating dairy cows
 grazing mixed-alfalfa pasture and supplement with partial mixed ration. Journal of Dairy
 Science 88, 644-652.
6. GRAU R., HAMM R., 1953 – Eine einfache Methode zur Bestimmung der Wasserbindung im
 pasz. INRA, Omitech Press.
8. JASIÓROWSKI H., KIJAK Z., POCZYNAŁO S., WAJDA S., 1996 – Program rozwoju
9. MANTYSAAPII P., KHALILI H., SARIOLA J., 2006 – Effect of feeding frequency of a total
 mixed ration on the performance of high-yielding dairy cows. Journal of Dairy Science 89
 (11), 4312-4320.
 spectroscopy to predict nutrient composition and in vitro digestibility of total mixed rations.
 Journal od Dairy Science 89 (6), 2320-2326.
11. MROCZKO L., SOBEK Z., 2003 – WinPasze – Komputerowy program bilansowania i opty-
 malizacji receptur paszowych, Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskie-
 go w Poznaniu.
12. MROCZKO L., ZARUDZKI R., 2000 – Bilansowanie i optymalizacja pasz treściowych i dawek
 pokarmowych ze szczególnym uwzględnieniem przeżuwaczy. Materiały konf. „Nowoczesne
 systemy szacowania wartości pokarmowej pasz i bilansowania dawek pokarmowych dla prze-
13. ONWUBUEMELI C., HUBER J.T., KING K.J., JOHNSON C.O., 1985 – Nutricle value of
 potato processing wastes in total mixed rations of dairy cattle. Journal of Dairy Science 68
 (5), 1207-1214.
Fattening of Polish Holstein-Friesian young bulls by the traditional system or total mixture ration (TMR)

Summary

Due to high content of protein, vitamins and mineral substances beef is the most valuable animal meat, suitable for human diet. The experiment was carried out on 28 young bulls of Polish Holstein-Friesian Black and White variety divided into two groups. Control group (I) was fed traditionally, the experimental group (II) was fed during experiment with total mixed ration (TMR). The daily gain in feeding period was approx. 840 g and 900 g, respectively. At the end of the fattening period the bulls were slaughtered at 450 kg. In both groups: control fed traditionally and experimentally fed with total mixed ration (TMR), there were not found any fundamental differences between the slaughter and meat quality traits.