Artykuł przeglądowy

Genetyka molekularna w hodowli zwierząt

Marek Łukaszewicz

Instytut Genetyki i Hodowli Zwierząt PAN w Jastrzębiu,
ul Postępu 1, 05-552 Wólka Kosowska; m.lukaszewicz@ighz.pl

Artykuł ma charakter przeglądowy, rozpatrywane są w nim praktyczne efekty wykorzystania osiągnięć genetyki molekularnej w hodowli zwierząt, z położeniem nacisku na selekcję wspomaganej markerami. Następnie, wychodząc z oczekiwań określonych kilka lat temu, zdefiniowano podstawowe różnice między selekcją klasyczną a opartą na markerach oraz podano przykłady rozwoju w oczekiwanie z wysockami i możliwe tego przyczyny z podaniem tła teoretycznego. Wśród przyczyn niezgodności przewidywań z rezultatami wyróżniono: trudność detekcji najbardziej przydatnych genów głównych, rekombinację między markerem a regionem kodującym, uproszczone modele sposobu dziedziczenia (szacowanie wpływu markera bez uwzględniania pleiotropii, stopnia penetracji, imprintingu, specyficzności tkankowej ekspresji genu, epistazy i dominacji), niewystarczające bazy danych dla cech nisko odziedziczalnych oraz niedoskonałość definicji cech ekonomicznie ważnych. Przyszłość hodowli leży w połączeniu wysiłków genetyki molekularnej i ilościowej. Ta druga pozostaje wciąż ważniejszym składnikiem tego związku.

SŁOWA KLUCZOWE: genetyka molekularna / selekcja / marker / rezultaty zastosowania

Mniej więcej od piętnastu lat w badaniach dotyczących hodowli zwierząt główny nacisk położony jest na bezpośrednie poznanie genomu zwierząt, ze szczególnym uwzględnieniem identyfikacji loci cech ilościowych i selekcji wspomaganej markerami. Nowe podejścia selekcjonalne stwarzają nowe możliwości. Genotypy mogłyby być określane bez potrzeby pomiaru fenotypu, poprzez genotypowanie zwierząt ze względu na ważne markery, a wartości hodowlane byłyby prostą sumą wpływów związanych z tymi markerami. Inne korzyści dopatrywano się w procesie doskonalenia cech nisko odzdzi-
czalnych, sprzężonych z płcią lub rejestrowanych późno w życiu. W nadziei, że intensywnie wykorzystanie informacji molekularnej w hodowli zwierząt przyniejsie znaczący postęp ekonomiczny, wysiłek finansowy przeniesiony został z badań rozwiązujucych problemy genetyki populacji na badania w dziedzinie genetyki molekularnej. W roku 1991 Michel Georges, jeden z czołowych badaczy na polu genetyki molekularnej w hodowli zwierząt, przewidywał, że za kilka lat metoda BLUP nie będzie już potrzebna [14].

Różnice między selekcją klasyczną a wspomagana markerami

Selekcja klasyczna, odpowiedzialna za dotychczasowy postęp osiągnięty u wszystkich gatunków zwierząt gospodarskich, wymaga często kosztownej kontroli użytkności, a uzyskane w tym procesie dane przetwarzane są na informację o jakości genetycznej ocenianych zwierząt (rys. 1). Informacja taka dotyczy głównie jakości zwierząt, wynikającej z poligenicznego uwarunkowania ocenianych cech, ale potrafi także zidentyfikować loci, odpowiadające w sposób wyróżniający za daną użytkowość, bez potrzeby genotypowania. Klasycznymi przykładami tej sytuacji są grupy krwi, genotypy różnych białek, hipertrofia mięśni u bydła, gen boroola u merynosów, wrażliwość na halotan u trzody chlewnej. Część z nich można określić jako geny główne, odpowiedzialne bezpośrednio za daną użytkowość, a część jako markery – geny (loci) sprzężone z kodującymi regionami chromosomu. W odróżnieniu jednak od genetyki molekularnej, genetyka populacji nie określała sekwencji zasad odcinka DNA, ani nie lokalizo-

![Rys. 1. Przepływ informacji w procesie oceny jakości genetycznej zwierząt](image)

Fig. 1. Information flow in the process of breeding value estimation
wała *locus* na chromosomie. Z punktu widzenia hodowcy informacja taka jest zbędna. Jakość genetyczna selekcjonowanych zwierząt przewidywana była, z różną dokładnością, przez odpowiednie przetworzenie informacji fenotypowej, uzyskanej w populacji o rozpoznanej strukturze rodzinowej. „Przetwarzanie” informacji odbywało się za pomocą funkcji o różnym stopniu złożoności – np. BLUP.

Istnieje również ważna różnica wynikająca z organizacji oceny wartości genetycznej zwierząt. W przypadku selekcji klasyfikacyjnej dane fenotypowe dotyczące wielu gatunków są własnością publiczną, a wyniki oceny wartości hodowlanej są ogólne dostępne. Metody genetyki molekularnej są stosowane w większości przypadków przez wyspecjalizowane firmy hodowlane, których wyniki pracy są poufne lub stanowią przedmiot patentów, stając się własnością prywatną [14]. Nawiasem mówiąc, sytuacja ta utrudnia śledzenie faktycznych zastosowań postępów genetyki molekularnej w komercyjnej hodowli.

Realizacja oczekiwań

Optymizm co do możliwości, jakie dawała selekcja wspomagana markerami, podsycony przez różne analizy obiegujące przyrost postępu genetycznego od 5 do 64% [3, 6, 13, 20], doprowadził do podejmowania badań mających na celu komercjalizację ich wyników. Badania te związane są głównie z nazwiskami M. Georges’a, J. Taylor’a i M. Bishop’a [14]. Znaleziono markery niemal dla każdej cechy, jednak odkrycia nie zawsze były potwierdzane przez inne zespoły badawcze lub uzyskiwano zdecydowanie różne efekty podstawienia genów.

Przyczyny rozbieżności

Rozpatrując sytuację na południu zastosowań osiągnięć genetyki molekularnej w hodowli zwierząt odnotował wrażenie *deja vu*. Po publikacjach Land’a i Hill’a z roku 1975 [10], a w szczególności Nicolas’a i Smith’a z roku 1983 [15], w środowisku hodowców, zwłaszcza bydła mlecznego, wybuchł entuzjazm związany z możliwościami, jakie, teoretycznie, mogła przynieść superwulacja wespół z przenoszeniem zarodków. Optymistyczne wyliczenia dotyczące przyspieszenia postępu genetycznego zaowocowały powstaniem wielu zespołów organizujących centra MOET, z nadzieją komercyjnego wykorzystania wyników. Już wówczas planowano mariaż tego narzędzia genetyki populacji (i embriologii) z informacją molekularną, w celu dalszego przyspieszenia selekcji w obrębie grup pełnego rodzeństwa (rys. 2).

Z różnych powodów oczekiwane rezultaty rozmięły się z uzyskiwanymi w praktyce, centra polikwadowane, a sama superwulacja i przenoszenie zarodków stosowane są szeroko w sposób niecentralizowany, właściwie tylko w celu upewnienia się, że z planowanego kojarzenia uzyskamy buhajka.
Grupa pełnego rodzeństwa (MOET) zgenotypowana pod względem np. κ-kazeiny

Group of full sibs (MOET) genotyped, for instance, for κ-casein

1 – AB
2 – BB
3 – AB
4 – AA
........
........

Do dalszej hodowli można pozostawić osobnika o korzystnym genotypie dla produkcji serowskiej

Animal of the favorable genotype for cheese production can be left for further breeding

Rys. 2. Wykorzystanie informacji molecularnej w grupach pełnego rodzeństwa
Fig. 2. Utilization of molecular information in full sibs groups

Model pojedynczego locus
Single-locus model of inheritance

\[g_{ij} = a_i + a_j + d_{ij} \]

\[g_{ij} = 1.1 \text{ kg} \]

\[a_i = 0.7 \text{ kg}; \ a_j = 0.3 \text{ kg} \]

\[d_i = 0.1 \text{ kg} \]

Rys. 3. Wpływy genetyczne związane z pojedynczym locus
Fig. 3. Genetic effects attributable to single-locus model of inheritance
Wracając do problemów genetyki molekularnej w hodowli zwierząt, rozpatrzmy uproszczoną sytuację, w której interesująca nas cecha warunkowana jest stosunkowo niewielką liczbą loci – na przykład 100. Mamy wówczas do czynienia z minimum 100 alelami (homozygota na każdym locus; loci na których w populacji występuje tylko jeden allele nas nie interesują), a maksymalnie z 200 (heterozygota na każdym locus).

W całej populacji alleli związanych z tymi loci może być oczywiście więcej. Przyjmując addytywny model dziedziczenia, wartość hodowlana danego zwierzęcia jest sumą wpływów addytywnych wszystkich jego alleli. Aby ocenić zwierzęta z tej populacji musimy znać wielkość wpływu każdego z możliwych alleli. Rozbudowując problem możemy przyjąć model dominacyjny. Wówczas do powyższych liczebności alleli i ich wpływów należy dodać minimum sto różnych wpływów wynikających z dominacji. Maksymalna liczba wpływów wynikających z dominacji, które należy ocenić, zależy od faktycznej liczby alleli na analizowanych loci w populacji. Wartość genetyczna zwierzęcia jest wówczas przybliżona sumą nie tylko addytywnych wpływów alleli, a także wpływów dominacyjnych.

![Model dwóch loci](image)

Rys. 4. Wpływy genetyczne związane z dwoma loci
Fig. 4. Genetic effects attributable to two-loci model of inheritance

Na rysunku 3 i 4 przedstawiono sytuacje, w których cecha warunkowana jest jednym lub dwoma loci. W naszym uproszczonym przykładzie (100 locii), zakładającym model addytywny i ewentualnie dominacyjny, mielibyśmy do czynienia z powieleniem sytuacji zilustrowanej na rysunku 3. Jednak, jak wynika z rysunku 4, w rzeczywistości mamy jeszcze do czynienia z interakcjami między wpływami allelicznymi i dominacyjnymi – w przypadku dwóch locii, w porównaniu do modelu pojedynczego locus, doszło jedenaście nowych, epistatycznych komponentów wpływających na użytkowość.
zwierzęcia (przy jedynie dwóch allelech na locus!). W najbardziej realistycznym modelu wielu loci i wielu allele na locus wartość genetyczną zwierzęcia możemy przedstawić jako:

\[g = a + d + aa + ad + dd + aaa + aad + \ldots . \]

Wnioskiem jest, że już założony przez nas model 100 loci tworzy sytuację nie do przesłedzenia. A czy 100 loci to dużo? Wielość wpływów genetycznych, których nie jesteśmy w stanie ogarnąć, przyczyniać się właśnie może do powstawania rozbieżności między oczekiwaniami a rzeczywistością. Pomim i wsp. [18], zajmujący się problemami genetyki molekularnej u myszy, zwrócił uwagę na kompleksowość i nieliniowość ekspresji genów w obecności epistazy. Badania innych autorów [17, 25] u bydła mlecznego dokumentują obecność interakcji epistatycznych. Innymi słowy można powiedzieć, że konkretnemu alleleowi można przypisać wiele wartości wpływu w zależności od jego sąsiadów w genomie.

Na dodatek to samo można powiedzieć o efeście podstawienia allele w zależności od środowiska. A jeszcze tkankowa specyficzność ekspresji genu, w połączeniu z imprintingiem, który sam wykazywać może specyficzność tkankową [28]. A stopień penetracji? Jednym z możliwych wyjść jest rozpatrywanie wpływu całych haplotypów [21]. Zrezygnować wówczas można z określania wpływów pojedynczych loci na rzecz łącznej oceny wpływu konkretnego haplotypu, który obejmuje również epistazę w jego obrębie. Odpowiadałoby to, w dużym przybliżeniu, sytuacji klasycznej, w której oce- niana wartość hodowlana odzwierciedla wartość zwierzęcia jako rodzica, czyli przeciętną wartość jego gamet (i uwzględnia całość zjawisk genetycznych zachodzących w obrębie gamety).

Można w tym momencie odnieść się do problemu „oderwania” pomiaru fenotypu od procesu oceny wartości genetycznej zwierzęta. Identyfikowanie co raz to nowych allele, determinujących jakąś użyteczność, wynagiera określenia przynajmniej addytywnego wpływu (efektu podstawienia) tych allele, a do tego niezbędny jest pomiar fenotypu. Ile allele już znamy? Ile allele czeka na poznanie? Łatwo zauważyć, że nawet stosując metody genetyki molekularnej fenotyp będzie musiał być mierzony jeszcze długo, jeśli nie zawsze (abstrahując od wymogów księgowości), zaważywszy możliwe interakcje epistatyczne i interakcje genotyp-środowisko. Podobnie jak w przypadku epistazy, allele może mieć tyle wpływów podstawienia ile jest potencjalnych środowisk, w jakich może się znajdować.

W selekcji wspomaganej markerami kluczową rolę odgrywa sprzężenie między markerem a, hasłowo ujmując, QTL. Im bliżej są one obok siebie, tym silniejsze sprzężenie, tym rzadziej dochodzi do rekombinacji między nimi w czasie meozy. Niestety poza idealnym przypadkiem, kiedy marker sam jest genem głównym (zerowa rekombinacja), sprzężenie takie jest zjawiskiem przejściowym. Przedej czy później dochodzi do rekombinacji powodującą, że inne allele z locus markerowego sprzęga się z korzystnym QTL (zmiana fazy sprzężeniaowej). Zjawisko to tłumaczyć może, przytaczane już, niepowodzenie opisane przez Hospital’a i wsp. [8] w hodowli roślin.
Rekombinacja odpowiada także za specyficzność rodzinną markerów genetycznych. W zależności od rodziny różne allele z *locus* markerowego mogą się sprzęgać z danym QTL powodując, że znalezione markery nie mają uniwersalnego charakteru. Ilustruje to wspomniany już przykład rodziny buhaha Feodal [12], w której allele BL może być markerem wysokiej produkcyjności, choć w innych rodzinach ta zależność się nie sprawdza. Dodatkowo sam QTL to na ogół region chromosomu składający się z co najmniej kilku *loci*, na obszarze którego może dochodzić do rekombinacji i zmiany założeń genetycznych w porównaniu do oczekiwanych [11]. Powstaje w ten sposób wymóg ciągłego monitorowania populacji selekcyjnej, w której wykorzystanie markerów, aby uniknąć niespodzianek opisywanych przez wielu autorów. Zagadnieniami związanymi z tym problemem zajmował się Dekkers [4]. Wyróżnił trzy rodzaje markerów: geny (główne, M.E.), markery w nierównowadze sprzężeniowej z QTL (1 do 5 cM) i marker w równowadze sprzężeniowej z QTL (populacje hybrydowe, duże grupy półodrodzenia w obrębie rasy, 15 do 50 cM). Rodzaje markerów wymienione są w kolejności ich przydatności w selekcji (najlepszy do najgorszy) i jednocześnie w kolejności trudności ich detekcji (najtrudniej do najłatwiej). W przypadku cech determinowanych przez jedno *locus*, które w ten sposób staje się genem głównym (wyjaśniamy 100% zmienności cechy), problem jest łatwiejszy – w jakich informacji pojawia się już w katalogach informujących o jakości genetycznej zwierząt. U bydła mlecznego podawany bywa np. genotyp κ-kaseiny lub faktсосicielstwa allele (semi)letalnych (np. BLAD). Dopiero zidentyfikowanie genu głównego dla cechy determinowanej poligenezicznie stanowi wyzwanie. Przyjmijmy ponownie, że mamy do czynienia z cechą determinowaną przez 100 *loci*. Każde z nich, w przybliżeniu, może odpowiadać za 1/100 (1%) variancji genetycznej cechy, przeciętnie. Są natomiast *loci* odpowiedzialne za większą część variancji – 2, 3, 4, ... procent. Gdzie leży granica, od której możemy uznać gen za główny? Jak szukać takiego genu? Gen tłumaczący 50% zmienności cechy byłby łatwy do zidentyfikowania, ponieważ mielibyśmy do czynienia z różnicami widocznymi fenotypowo.

Brak sukcesu w znalezieniu markerów cech nisko odziedziczalnych wiązać jest z brakiem wystarczająco dużych zbiorów danych, aby móc przesiedzić sprzężenia marker-QTL [4]. Wymagana jest w przypadku takich cech duża liczba zwierząt zgenotypowanych pod względem markerów i/ lub genów kandydujących, co na dodatek może czynić problem bardzo kosztownym.

Kolejną, najważniejszą z punktu widzenia hodowcy, przyczyną rozmijania się oczekiwań z uzyskiwanymi wynikami selekcji jest niedoskonałość identyfikacji cech rzeczywiście odzwierciedlających daną użytkowość. Przytoczone wcześniej prace Quaas’a [19] i Spelman’a [23] ilustrują tę sytuację. Odpowiednio, albo korelacja marker-cecha dotyczy cechy wtórnej (punktacja tuszy, a nie ma wpływu na cechę pierwotną (marmurkowatość), albo cecha (stosunek białka do tłuszczu w mleku), skorelowana z markerem DGAT1, nie ma w rzeczywistości przełożenia na system ustalania ceny mleka [14]. Zastanówmy się przykładowo nad niezmiernie ważną, nisko odziedziczaną cechą „plodność”. Określić ją można jako „zdołość do zapłodnienia (i utrzymania ciąży)”. Jak mierzyć tę zdolność? Nie znamy cechy, która odzwierciedlałaby ją bezpo-

Na zakończenie rozpatrywania przyczyn rozchodzenia się oczekiwań związanych z wykorzystaniem genetyki molekularnej w hodowli zwierząt należy wspomnieć o plejotropii. Jeśli cechy warunkowane jednym genem nie wpływają przeciwnie na wynik ekonomiczny – nie ma specjalnego klopotu. Powstaje on dopiero wtedy, gdy w selekcji wykorzystujemy gen (marker) warunkujący jedną cechę, nie zdając sobie sprawy z tego, że wpływa on także na inną ważną cechę – w kierunku obniżającym efekt ekonomiczny. Cortland i Whitlock [2] wykazali, że plejotropia zafalizpowuje wyniki mapowania QTL. Inną sprawą jest rozróżnienie, czy mamy do czynienia z jednym genem o plejotropowym działaniu, czy dwoma blisko sprzężonymi [9], jako że w hodowli jedną z podstawowych spraw jest rozrywanie niepożądanych sprzężeń (i tworzenie sprzyjających).

Inne aspekty

Obok omówionych dotychczas aspektów wykorzystania osiągnięcie genetyki molekularnej w hodowli zwierząt są i inne, nieco mniej związane z praktyczną hodowlą. Dotyczą one w głównej mierze DNA finger printing. Przykładowo, geny przestały być anonomowe – potrafimy coraz więcej z nich przypisać konkretnym chromosomom i zlokalizować je na chromosomie. Dysponujemy dokładniejszą, niż opartą na np. grupach krwi, identyfikacją zwierząt, co sprzyjają dokładności rodowodów, a tym samym wiarygodności przewidywanych wartości hodowlanych, zwłaszcza w systemach, w których zaangażowanych jest wielu ojców do uzyskania jednej ciąży (np. zwierzęta futerkowe). Ponadto łatwiej jest udokumentować pochodzenie zwierząt w przypadkach krzędzieży, czy też prześledzić zagrożenie epizootyczne. Znajomość polimorfizmu w populacjach zagrożonych wyginięciem pozwala, wykorzystując koncept Weitzman’a [27], na zadecydowanie, które populacje powinny być zachowywane w przypadku rywalizacji o środki [22]. Bardziej konserwatywne, dziedziczone w linii matcejnej, DNA mitochondrialne umożliwia nam bliższe prześledzenie historii i spokrewnienia populacji.

Przyszłość

Coraz więcej informacji molekularnej pojawiać się będzie w ofercie dla hodowców. Cechy i korelacje między nimi zmieniają się w czasie [24]. Allele i ich kombinacje
pojawiają się w różnych środowiskach. Intensywne wykorzystanie genów głównych w selekcji cech ekonomicznie ważnych wymagać będzie monitorowania ich wpływu na cechy adaptacyjne. Istnieje wciąż potrzeba zdefiniowania wielu cech, zarówno z punktu widzenia celu hodowlanego (ekonomicznego), jak i z punktu widzenia zrozumienia ścieżek od genotypu do fenotypu. Trzeba się skłaniać ku poglądowi Walsh'a i Henderson'a [26], że dużo czasu upłynie, zanim klasyczna selekcja stanie się zdobna, a tymczasem przyszłość hodowli leży w połączeniu wysiłków genetyki molekularnej i ilościowej. Ta druga jest wciąż ważniejszym składnikiem tego związku [14].

PIŚMIENNICTWO
2. CORTLAND K.G., WHITLOCK M.C., 2003 – The genetics of adaptation: The roles of pleiotropy, stabilizing selection and drift in shaping the distribution of bidirectional fixed mutational effects. *Genetics* 165, 2181-2192.

22. SIMIANER H., 2006 – Accounting for concurrence between breeds in the derivation of conservation priorities based on Weitzman’s diversity concept. Proc. of the 30th International Conference on Animal Genetics, 2006, Porto Seguro, Brazil. Belo Horizonte, Brazil.

Molecular genetics in animal breeding

Summary

The review addresses utilization of advances of molecular genetics in livestock breeding, with a stress put on the marker-assisted selection. Beginning with the expectations which emerged some fifteen years ago, the paper defines the main differences between the classical and marker assisted selections and gives examples of discrepancies between the expectations and the realized effects, presented against the theoretical background. From amongst the possible causes of the discrepancies the following are mentioned: difficulty to detect, the most useful, major genes, recombination between marker and coding region, simplified models of inheritance (estimating marker effects without accounting for pleiotropy, penetration degree, imprinting, tissue specificity of gene expression, epistasis and dominance), insufficient data bases for low heritable traits and failure to properly define breeding goals. The future of breeding relies on the joint efforts of molecular and population genetics. The latter one is, for the time being, the more crucial component of such a union.