Zmiany wartości cech produkcyjnych krów rasy polskiej holszyńsko-fryzyjskiej odmiany czarno- i czerwono-białej w pierwszych 5 laktacjach

Marian Kuczańska1, Robert Kupeczyński2, Anna Zielak1, Paweł Blicharski3, Justyna Klucznik3

1Uniwersytet Przyrodniczy we Wrocławiu, Instytut Hodowli Zwierząt, ul. Chelmońskiego 38 C, 51-630 Wrocław, marian.kuczaj@up.wroc.pl
2Uniwersytet Przyrodniczy we Wrocławiu, Katedra Higieny Zwierząt i Ichtiologii, ul. Chelmońskiego 38 C, 51-630 Wrocław
3Ośrodek Hodowli Zarodowej w Kamieniu Ząbkowickim Sp. z o.o., pl. Kościelny 1, 57-230 Kamieniec Ząbkowicki

Badania przeprowadzono na 432 krowach utrzymywanych w systemie wolnostanowiskowym, w fermie zlokalizowanej w południowo-zachodniej Polsce. Porównywano zmiany parametrów użytkowości mlecznej krów rasy polskiej holszyńsko-fryzyjskiej odmiany czarno- i czerwono-białej, z różnicym udziałem genów bydła rasy hf, utrzymywanych w podobnych warunkach środowiskowych, w pierwszych 5 laktacjach 305-dniowych. Stwierdzono zadowalającą dynamikę we wzroście badanych wartości cech produkcyjnych krów mieszkańców kolejnych pokoleń krzyżowania wypierającego. Genetyczne predyspozycje krów odmiany czarno-białej do wysokiej produkcji mleka w kolejnych 5 laktacjach były statystycznie istotnie wyższe niż krów odmiany czerwono-białej. Maksymalne wartości badanych cech produkcyjnych uzyskiwały krowy najczęściej w III laktacji.

SŁOWA KLUCZOWE: krowy mleczne / laktacja / wydajność i skład chemiczny mleka

Wysoka wydajność mleka i jego skład chemiczny zależy w głównej mierze od wartości genetycznej buhajów użytych do rozrodu oraz racjonalnego żywienia i optymalnych warunków utrzymania krów [3, 12, 13, 14, 15]. Wzrastającej wydajności mleka w fermach bydła mlecznego towarzyszy wiele zjawisk negatywnych, m.in. pogorszenie zdrowotności i skrócenie okresu użytkowania krów [5]. Przeciwdziałanie niekorzystnym ubocznym skutkom selekcji, skierowanej na wzrost wydajności mlecznej, polega na doskonaleniu cech funkcjonalnych (m.in. ograniczanie schorzeń metabolicznych oraz zaburzeń w rozrodzie).
Obecnie hodowcy bydła mlecznego i producenci mleka są zainteresowani nie tylko wzrostem wydajności mlecznej, lecz także składem chemicznym mleka, tzn. dużą zawartością białka oraz małą koncentracją tłuszczu [10, 11, 13, 16], a także poprawą wartości cech funkcjonalnych u bydła (m.in. wydłużenie okresu użytkowania). Powszechnie wiadomo, że maksymalną wydajność mleczną osiągają krowy w wieku 6-7 lat, w późniejszym wieku następuje powolny jej spadek. W aktualnie obowiązującym systemie limitowania produkcji mleka szczególnego znaczenia nabiera przydatność poszczególnych ras mlecznych do dalszej hodowli, zwłaszcza w nowoczesnych fermach bydła mlecznego. Poglądy wielu hodowców na temat przydatności krów rasy phf odmiany czerwono-białej do wysokiej wydajności mlecznej, zwłaszcza w warunkach intensywnego żywienia, są niejednoznaczne [8, 9, 10, 12].

Celem badań było porównanie zmian wartości cech produkcyjnych krów rasy polskiej holsztyńsko-fryzyjskiej odmiany czarno- i czerwono-białej z różnym udziałem genów bydła rasy holsztyńsko-fryzyjskiej, w pierwszych pięciu 305-dniowych laktacjach. Badane krowy pochodziły z chowu własnego i były użytkowane w podobnych warunkach środowiskowych.

Materiał i metody

Badania przeprowadzono na 432 krowach utrzymywanych w fermie bydła mlecznego w południowo-zachodniej Polsce. Analizie poddano krowy, które jako pierwsiaki weszły do stada podstawowego w latach 1996-1999 i były użytkowane do momentu wybrakowania. Przeciętny wiek pierwszego wyciechenia się badanych krów wynosił około 26 miesięcy. Informacje o krowach pochodziły z dokumentacji hodowlanej gospodarstwa oraz z systemu komputerowego OBORA.

W gospodarstwie krowy utrzymywano systemem alkierzowym, wolnostanowiskowym, w jednakowych warunkach żywienia TMR (Total Mixed Ration). Krowy odmiany czarno- i czerwono-białej przebywały razem w grupach technologicznych (żywieniowych). Zapewniono im jednakowe warunki pielęgnacji i utrzymania oraz prawidłowy dobrostan. Dojście krów w ciągu doby przeprowadzono 3-krotnie (do 150. dnia laktacji) lub 2-krotnie (powyżej 150. dnia laktacji), w dwóch halach udowyowych typu „bok w bok”.

W pierwszych pięciu laktacjach 305-dniowych oceniano wydajność mleka, tłuszczu i białka oraz zawartość tłuszczu i białka w mleku. Obliczono zależność między składnikami mleka, tj. stosunek zawartości białka do tłuszczu – indeks PFR (protein to fat content ratio). Wydajność mleczną krów w laktacjach 305-dniowych przeliczono na mleko skorygowane na 4% tłuszczu – FCM (fat corrected milk) [7]. Ponadto przeliczono 305-dniową wydajność mleczną krów na mleko skorygowane na zawartość tłuszczu i białka – VCM (value corrected milk), według wzoru zaproponowanego przez Arbela i wsp. [1]:

\[
VCM = -0.05 \times \text{wydajność rzeczywista mleka (kg)} + 8,66 \\
\times \text{wydajność tłuszczu (kg)} + 25,98 \times \text{wydajność białka (kg)}
\]
Obliczono indeks Sandersa, określający stosunek maksymalnej dzienniej wydajności do wydajności mleka za okres 305-dniowej lactacji. W przeprowadzonej analizie dokonano podziału stada królów na dwie odmiany rasowe: HO - czarno-biała i RW - czerwono-biała oraz na trzy grupy genetyczne: 1 - z niskim (≤75,0%), 2 - średnim (75,1-87,5%); 3 - z wysokim (>87,5%) udziałem genów bydła rasy holsztyńsko-fryzjerskiej.

Dane opracowano statystycznie posługując się programem Statistica PL. Istotność różnic między średnimi zweryfikowano testem rozstępu Dunca. Dynamikę zmian w badanych grupach w kolejnych lactacjach (cyklach produkcyjnych) określono w wartościach względnych (w %) w stosunku do wartości cech użytkowości mlecznej królów w I lactacji przyjętych za 100%.

Wyniki i dyskusja

W tabeli 1 zestawiono średnie wartości badanych cech produkcyjnych królów rasy phf odmiany czarno- i czerwono-białej w pierwszych pięciu lactacjach 305-dniowych. Lepsze wyniki odnotowano u królów odmiany czarno-białej we wszystkich analizowanych parametrach użytkowości mlecznej (z wyjątkiem zawartości tłuszczu w mleku w III i IV lactacji oraz indeksu PFR w V lactacji), w porównaniu do królów odmiany czerwono-białej. Z danych przedstawionych w tabeli 1 wynika, że pomiędzy odmianami królów stwierdzono statystycznie wysoko istotne różnice na korzyść królów odmiany czarno-białej, dotyczące:

- wydajności mleka w lactacjach: II (1138 kg - wartość względna 10,5%), III (1316 kg, 9,6%);
- wydajności mleka FCM w lactacjach: II (1290 kg, 11,2%), III (1290 kg, 10,6%);
- wydajności mleka VCM w lactacjach: II (1463 kg, 11,4%), III (1744 kg, 12,9%);
- wydajności tłuszczu w lactacjach: II (55,7 kg, 11,6%), III (50,9 kg, 10,2%);
- wydajności białka w lactacjach: II (39,9 kg, 11,3%), III (52,7 kg, 14,0%);
- zawartość białka w mleku: w III lactacji (0,09%, wartość względna 2,7%).

W pozostałych cechach między badanymi grupami królów różnice statystycznie istotnych nie stwierdzono. Najmniejsze zróżnicowanie badanych parametrów użytkowości mlecznej wystąpiło u królów pierwiastek, a największe - w lactacjach II i III. Wyniki badań własnych są zbliżone z obserwacją innych autorów [11, 12], którzy także stwierdzili niższe wartości cech mlecznych w lactacjach 305-dniowych u królów czerwono-białych, w porównaniu z różnimi odmianami czerwono-białymi, utrzymywanymi w jednostkach, w których obserwacji były pochodzenia środowiskowych. Podobne tendencje zatwierdzają także innych autorów [4, 9, 10, 13, 14, 15, 17]. W innych badaniach [18] zaznaczono większe zróżnicowanie w wydajności tłuszczu i białka. Najmniejszą wydajność tłuszczu i białka charakteryzowały się pierwiastki, a najwyższą królową w III lactacji. Podobne wyniki produkcyjne w przypadku królów wysoko wydajnych uzyskali inni autorzy [4, 9, 10, 13, 14, 15, 17]. W innych badaniach [18] zaznaczono większe zróżnicowanie w wydajności tłuszczu (13,9 kg, wartość względna 3,7%) i białka (12,7 kg, 4,4%). Najmniejsze zróżnicowanie
Table 1 - Table 1
Wartości badanych cech produkcyjnych w kolejnych 305-dniowych laktacjach krów rasy polskiej holszyńsko-fryzyjskiej odmiany czarno- i czerwono-białej
Values of analysed production features in subsequent 305-day lactation of Polish Holstein-Friesian cows of Black- or Red-and-White variety

<table>
<thead>
<tr>
<th>Specification</th>
<th>HO+ (n=196)</th>
<th>RW+ (n=236)</th>
<th>HO- (n=137)</th>
<th>RW- (n=163)</th>
<th>Numer laktacji – Lactation number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mleko (kg)</td>
<td>8843</td>
<td>8492</td>
<td>10 813³</td>
<td>9675³</td>
<td>11 500³</td>
</tr>
<tr>
<td>Milk (kg)</td>
<td>2274</td>
<td>2082</td>
<td>2602</td>
<td>2583</td>
<td>2584</td>
</tr>
<tr>
<td>Mleko FCM (kg)</td>
<td>9186</td>
<td>8837</td>
<td>11 520³</td>
<td>10 230³</td>
<td>12 118³</td>
</tr>
<tr>
<td>Milk FCM (kg)</td>
<td>2299</td>
<td>2154</td>
<td>2828</td>
<td>2786</td>
<td>2611</td>
</tr>
<tr>
<td>Mleko VCM (kg)</td>
<td>10 278⁸</td>
<td>9844</td>
<td>12 827³</td>
<td>11 364³</td>
<td>13 535³</td>
</tr>
<tr>
<td>Milk VCM (kg)</td>
<td>2513</td>
<td>2357</td>
<td>3137</td>
<td>2928</td>
<td>2962</td>
</tr>
<tr>
<td>Theszcz (kg)</td>
<td>3766</td>
<td>3627</td>
<td>479³</td>
<td>424³</td>
<td>501³</td>
</tr>
<tr>
<td>Fat (kg)</td>
<td>97.2</td>
<td>91.9</td>
<td>124.1</td>
<td>121.1</td>
<td>112.3</td>
</tr>
<tr>
<td>Białko (kg)</td>
<td>287.1</td>
<td>274.4</td>
<td>354.6³</td>
<td>314.7³</td>
<td>376.1³</td>
</tr>
<tr>
<td>Protein (kg)</td>
<td>71.3</td>
<td>66.4</td>
<td>87.3</td>
<td>80.5</td>
<td>85.6</td>
</tr>
<tr>
<td>Theszcz (%)</td>
<td>4.26</td>
<td>4.27</td>
<td>4.44</td>
<td>4.38</td>
<td>4.36</td>
</tr>
<tr>
<td>Fat (%)</td>
<td>0.52</td>
<td>0.49</td>
<td>0.55</td>
<td>0.49</td>
<td>0.55</td>
</tr>
<tr>
<td>Białko (%)</td>
<td>3.25</td>
<td>3.23</td>
<td>3.28</td>
<td>3.25</td>
<td>3.27</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>0.16</td>
<td>0.16</td>
<td>0.22</td>
<td>0.19</td>
<td>0.23</td>
</tr>
<tr>
<td>Indeks PFR</td>
<td>0.76</td>
<td>0.76</td>
<td>0.74</td>
<td>0.74</td>
<td>0.75</td>
</tr>
<tr>
<td>PFR index</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Indeks Sandersa</td>
<td>238.3</td>
<td>226.5</td>
<td>224.2</td>
<td>212.6</td>
<td>227.5</td>
</tr>
<tr>
<td>Sanders’ index</td>
<td>25.4</td>
<td>27.6</td>
<td>33.9</td>
<td>27.6</td>
<td>22.6</td>
</tr>
</tbody>
</table>

*odmiana czarno-biała – Black-and-White variety
**odmiana czerwono-biała – Red-and-White variety

Średnie w obrębie kolejnych laktacji oznaczone różnymi literami różnią się istotnie przy P≤0.01

Mean values within successive lactations marked with the different letters differ significantly at P≤0.01
w wydajności tłuszczu wykazano u krów w II i III laktacji. Wydajność białka była najbardziej zróżnicowana w kolejnych laktacjach: II (39,9 kg, 11,2%), III (52,7 kg, 14,0%) i IV (40,1 kg, 11,3%). Najniższą zawartością tłuszczu w mleku cechowały się pierwiastki obu odmian rasowych, a najwyższą krowy odmiany czarno-białej w V laktacji. Największą różnicę, statystycznie istotną (przy P≤0,01), wykazano w zawartości białka w mleku krów tych odmian w III laktacji. Najwyższą zawartość tego składnika stwierdzono w II i III laktacji u krów odmiany czarno-białej, a najniższą w V laktacji u równieśnic odmiany czerwono-białej. W innych badaniach [18] zaobserwowano najwyższą zawartość tłuszczu (4,02%) i białka (3,38%) w mleku krów rasy hf w III laktacji.

W stosunku do I laktacji (przyjętej jako 100%) najwyższy przyrost wartości badanych cech produkcyjnych odnotowano w III laktacji u krów odmiany czarno-białej: w wydajności mleka (o 30,0%), mleka FCM (o 31,9%), mleka VCM (o 31,7%), wydajności tłuszczu (o 33,1%), wydajności białka (o 31,0%); z wyjątkiem zawartości tłuszczu (o 4,9% w V laktacji) i zawartości białka (o 0,9% wartości względnej w II laktacji).

Stosunek białka do tłuszczu (indeks PFR) w mleku krów obu odmian był podobny. Wartość tego indeksu była najwyższa u pierwiastek (0,76) i miała wraz z wiekiem krów, uzyskiwając w V laktacji najniższe wartości (0,70). Podobną tendencję zaobserwowano w innych badaniach [18]. Wskazuje to na trudności utrzymania równoważnego stosunku białkowo-tłuszczowego w kolejnych laktacjach. Uzyskane wartości badanego wskaźnika są niższe od przedstawionych przez Górską i wsp. [6], którzy w swych badaniach wykazali istotnie niższy indeks PFR w mleku krów rasy cb (0,79) w stosunku do równieśnic rasy czb (0,84).

Wyższe (korzystniejsze), ale nie potwierdzone statystycznie, wartości indeksu Sandersa w kolejnych 5 cyklach produkcyjnych uzyskały krowy odmiany czarno-białej niż równieśnic odmiany czerwono-białej. Wskaźnik ten uzyskał najwyższe wartości u krów pierwiastek i malął nieradialnie w kolejnych laktacjach. Największa różnica w wartości tego indeksu wystąpiła u krów ocenianych odmian w III laktacji (21,3, wartość względna 9,4%) i była ona niemal 2-krotnie wyższa w porównaniu do uzyskanej w I i II laktacji. W stosunku do I laktacji (przyjętej jako 100%) największy spadek wartości tego indeksu (o 9,0%) odnotowano w III laktacji u krów odmiany czerwono-białej. W innych badaniach dla krajowej populacji krów uzyskano podobne wartości indeksu Sandersa, a nieco wyższe dla krów czarno-białych importowanych z Holandii [11].

W tabeli 2 przedstawiono średnie wartości badanych cech produkcyjnych trzech grup genetycznych badanych krów w 5 kolejnych laktacjach. Stwierdzono, że udział genów rasy hf w genotypie krów miał statystycznie istotny wpływ na wydajność mleka, mleka FCM i VCM oraz wydajność tłuszczu (z wyjątkiem IV i V laktacji) i białka (z wyjątkiem V) w kolejnych laktacjach. Natomiast stwierdzono różnice w zawartości tłuszczu i białka w mleku oraz w indeksach PFR i Sandersa, między rozpatrywanymi grupami we wszystkich pięciu cyklach produkcyjnych okazały się statystycznie nie-istotne.

Najwyższą wydajność mleka, mleka FCM i VCM oraz wydajność tłuszczu i białka w kolejnych laktacjach (z wyjątkiem V laktacji) uzyskały krowy z wysokim (>87,5%)
Tabela 2 – Table 2
Values of analysed production features in subsequent 305-day lactations of cows with different genotypes

<table>
<thead>
<tr>
<th>Wyszczególnienie</th>
<th>Genotyp*</th>
<th>Numer laktacji – Lactation number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specyfikacja</td>
<td>Genotype</td>
<td>I</td>
</tr>
<tr>
<td>Liczebność (szt.)</td>
<td></td>
<td>196</td>
</tr>
<tr>
<td>Number of heads</td>
<td>2</td>
<td>121</td>
</tr>
<tr>
<td>3</td>
<td>115</td>
<td>81</td>
</tr>
<tr>
<td>Mleko (kg)</td>
<td>1</td>
<td>8306</td>
</tr>
<tr>
<td>Milk (kg)</td>
<td>2</td>
<td>8542</td>
</tr>
<tr>
<td>3</td>
<td>9355</td>
<td>2282</td>
</tr>
<tr>
<td>Mleko FCM (kg)</td>
<td>1</td>
<td>8606</td>
</tr>
<tr>
<td>FCM milk (kg)</td>
<td>2</td>
<td>8944</td>
</tr>
<tr>
<td>3</td>
<td>9710</td>
<td>2260</td>
</tr>
<tr>
<td>Mleko VCM (kg)</td>
<td>1</td>
<td>9614</td>
</tr>
<tr>
<td>VCM milk (kg)</td>
<td>2</td>
<td>9978</td>
</tr>
<tr>
<td>3</td>
<td>10 866</td>
<td>2426</td>
</tr>
<tr>
<td>Tuszeń (kg)</td>
<td>1</td>
<td>3524</td>
</tr>
<tr>
<td>Fat (kg)</td>
<td>2</td>
<td>3684</td>
</tr>
<tr>
<td>3</td>
<td>3975</td>
<td>948</td>
</tr>
<tr>
<td>Białko (kg)</td>
<td>1</td>
<td>2686</td>
</tr>
<tr>
<td>Protein (kg)</td>
<td>2</td>
<td>2777</td>
</tr>
<tr>
<td>3</td>
<td>3025</td>
<td>688</td>
</tr>
<tr>
<td>Tuszeń (%)</td>
<td>1</td>
<td>4.24</td>
</tr>
<tr>
<td>Fat (%)</td>
<td>2</td>
<td>4.31</td>
</tr>
<tr>
<td>3</td>
<td>4.25</td>
<td>0.52</td>
</tr>
<tr>
<td>Białko (%)</td>
<td>1</td>
<td>3.23</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>2</td>
<td>3.25</td>
</tr>
<tr>
<td>3</td>
<td>3.23</td>
<td>0.14</td>
</tr>
<tr>
<td>Indeks PFR</td>
<td>1</td>
<td>0.76</td>
</tr>
<tr>
<td>PFR index</td>
<td>2</td>
<td>0.77</td>
</tr>
<tr>
<td>3</td>
<td>0.76</td>
<td>0.09</td>
</tr>
<tr>
<td>Indeks Sandersa</td>
<td>1</td>
<td>2273</td>
</tr>
<tr>
<td>Sanders index</td>
<td>2</td>
<td>2313</td>
</tr>
<tr>
<td>3</td>
<td>240.1</td>
<td>25.2</td>
</tr>
</tbody>
</table>

*Genotyp: 1 – ≤75.0% Hf; 2 – 75.1-87.5% Hf; 3 – >87.5% Hf;

*Genotype: 1 – ≤75.0% HF; 2 – 75.1-87.5% HF; 3 – >87.5% HF

Średnie w obrębie kolumny oznaczone różnymi literami różnią się istotnie: a, b – przy P≤0.05; A, B – przy P≤0.01

Mean values in columns marked with the different letters differ significantly: a, b – at P≤0.05; A, B – at P≤0.01
udzialem genow rasy hf (3 grupa genetyczna), w porównaniu do pozostałych dwóch grup genetycznych (1 grupa genetyczna - ≤75,0% genów rasy hf, 2 - 75,1-87,5%). Krowy z udziałem ≤75,0% genów rasy hf (1 grupa genetyczna) charakteryzowały się najniższymi wartościami tych cech. W wydajności mleka wystąpiły różnice statystycznie istotne: w I laktacji między grupami genetycznymi 1-3 oraz 2-3; w II laktacji między grupami 1-2, 1-3 i 2-3; w III laktacji między grupami 1-2 i 1-3; w IV laktacji między grupami 1-3. W wydajności mleka FCM odnotowano również różnice statystycznie istotne: w I laktacji między grupami 1-3 i 2-3; w II laktacji między grupami 1-2 i 1-3; w III laktacji między grupami 1-3; w IV laktacji między grupami 1-2 i 1-3. W wydajności mleka VCM statystycznie istotne zróżnicowanie wystąpiło: w I laktacji między grupami 1-3 i 2-3; w II laktacji między grupami 1-2, 1-3 i 2-3; w III i IV laktacji odpowiednio między grupami 1-3. Podobne różnice statystycznie istotne wystąpiły w przypadku wydajności tłuszczu i białka między badanymi grupami genetycznymi w pierwszych czterech laktacjach (z wyjątkiem wydajności tłuszczu w IV laktacji).

W stosunku do pierwiastek wszystkich grup genetycznych (wartości przyjęte jako 100%) maksymalny przyrost wydajności mleka (o 31,1% w IV laktacji), mleka FCM (o 31,4% w IV laktacji) oraz wydajności mleka VCM (o 28,8% w III laktacji) uzyskały krowy z 2. grupy genetycznej (tab. 2). Najmniejszy wzrost wydajności mleka, tłuszczu i białka oraz zawartości białka w mleku (z wyjątkiem zawartości tłuszczu w mleku) wystąpił u krów z 3. grupy genetycznej w V laktacji. Największe wartości indeksów PFR i Sandersa wystąpiły u krów pierwiastek. W relacji do I laktacji (przyjętej jako 100%) najmniejszy spadek wartości PFR odnotowano w grupach: 2. i 3. (w III laktacji), a największy – w 1. grupie (w V laktacji). Notowania indeksu Sandersa obniżały się minimalnie w 3. grupie (w II laktacji), a maksymalnie w 2. grupie (w V laktacji).

Krowy z wysokim (>87,5%) udziałem genów rasy hf, silniej reagowały spadkiem wartości badanych cech mlecznych w V laktacji niż równieśnie ze średnim (od 75,1 do 87,5%) i niskim (<75%) udziałem genów rasy hf. Można przypuszczać, że zaobserwowane zjawisko mniejszej (ale nie potwierdzonej statystycznie) wydajności mleka, tłuszczu i białka krów z 3. grupy genetycznej w V laktacji nad równieśnicami z grupy 1. i 2. wynikało z nadmiernej eksploatacji (zmęczenia) organizmu tych krów, które przez cztery kolejne laktacje przewyższyły wydajnością mleczną równieśnie z niskim (grupa 1) i ze średnim (grupa 2) udziałem genów rasy hf.

Podsumowując należy stwierdzić, że w jednakowych warunkach środowiskowych, wydajność mleczna krów rasy phf odmiany czarno-białej w pięciu kolejnych laktacjach, w porównaniu do wydajności równieśnie odmiany czerwono-białej, była wyższa, a największe różnice statystycznie istotne (P≤0,01) wykazano w laktacji II i III. Największe wartości badanych cech użytkowości mlecznej uzyskiwały krowy odmiany czarno-
i czerwono-białej badanych genotypów najczęściej w III laktacji. W laktacjach IV i V następował powolny spadek ich mleczności, będący prawdopodobnie skutkiem zmniejszania się sprawności gruszczów mlekowych, w których procesy regeneracyjne przebiegają słabiej. Potencjal produkcyjny krów pierwiastek w porównaniu do wieloródek był niższy o około 30%, fakt ten należy uwzględnić przy organizacji żywienia i tworzeniu grup technologicznych.

PIŚMIENNICTWO

Changes in the level of production traits in Polish Holstein-Friesian cows of Black- or Red-and-White variety

Summary

Investigations were carried on 432 cows maintained in free stall system on a farm situated in the south-west of Poland. The aim of the work was to compare the rate of change in milk performance parameters in Polish Holstein-Friesian cows with different contribution of Holstein-Friesian genes maintained in similar environmental conditions in the first five 305-day lactations. The satisfactory dynamics in the increase of production traits increase of subsequent generations of crossbred cows was observed. The level of production traits in Black-and-White variety in subsequent 5 lactations was significantly higher than for Red-and-White cows. Maximal values of the estimated reproductive traits were mostly obtained in the III lactation cows.